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- The best atomic clocks achieve fractional uncertainties 
below 10-18

- 88Sr+ is a good candidate due to its narrow clock transition 
at 674 nm and convenient cooling and repump transitions 
in the visible spectrum

- Operating at cryogenic temperatures suppresses blackbody 
radiation and background gas collisions 

Introduction Ionizing Sr and Trapping Sr+

Why Cryogenic Conditions?

Ablation and Ionization
- Pulsed 532 nm laser ablates a SrTiO3 

crystal creating a vapor of neutral 
strontium 

Operating the Clock
- 422 nm laser cools kinetic motion 
- 1092 nm re-pump laser contains 88Sr+ 

to S-P cooling branch
- 674 nm laser to address clock 

transition
- 1033 nm laser to quickly return ion to 

ground state after exciting to long 
lived 2D5/2 state

Figure 3: Two step ionization pathway of 88Sr [3]

Trapping
- Trap driven at 14.4 MHz to cancel the 

electric quadrupole and second order 
Doppler shifts [4]

- Helmholtz coils for magnetic field 
control and suppression of magnetic 
field noise 

Figure 1:  Fractional uncertainties of atomic clocks  throughout history

Reduce Blackbody Radiation Shift
- An AC Stark shift is induced by the interaction of 88Sr+ with the 

electromagnetic radiation from blackbody sources [1]

- Operating the clock a factor of 100 below room temperature 
reduces uncertainty by a factor of 108

Reduce Collisional Frequency Shift
- Background gas molecules interact with the trapped ion 

through collisions perturbing the ion’s energy levels and causing 
frequency shifts that scale linearly with pressure

- The cryogenic chamber walls absorb background gas molecules 

Design Highlights

40 K Blackbody 
Shield 

Inner Vacuum 
Chamber 

Connects to  Auxiliary 
Chamber and Cryocooler

Paul Trap

FIgure 6: Interior of the inner vacuum chamber (left) and enlarged 
view of Paul trap (right)

- 40 K blackbody radiation shield thermally isolates 88Sr+ 
from 300 K environment

- Inner vacuum chamber maintains temperatures below 5 K 
and pressure <10-15 Torr

Outer Vacuum 
Chamber 

Figure 4: Partial energy level diagram of 88Sr+ [3]
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Figure 5: Camera image of Paul trap, 
used for ion detection
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