Cryogenic Optical Clock with Trapped °2Sr*
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Introduction

- The best atomic clocks achieve fractional uncertainties
below 1078

- 88Gr* is a good candidate due to its narrow clock transition
at 674 nm and convenient cooling and repump transitions
in the visible spectrum

- Operating at cryogenic temperatures suppresses blackbody
radiation and background gas collisions
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Figure 1: Fractional uncertainties of atomic clocks throughout history

Why Cryogenic Conditions?

Reduce Blackbody Radiation Shift

- An AC Stark shift is induced by the interaction of 88Sr* with the
electromagnetic radiation from blackbody sources [1]

~1 F N*
AVBBR = oA (E%) Aag(l +n) =~ 0.248 (300 K) Hz

- Operating the clock a factor of 100 below room temperature
reduces uncertainty by a factor of 10°®

Reduce Collisional Frequency Shift

- Background gas molecules interact with the trapped ion
through collisions perturbing the ion’s energy levels and causing
frequency shifts that scale linearly with pressure

- The cryogenic chamber walls absorb background gas molecules

Fractional Shift Av/vy [x10718]

Source Room Temperature clock Estimates for Cryoclock
Collisional 2.6 0.0001
Blackbody Radiation 12 0.00002
Electric Quadrupole 0.03 0.03
Micromotion 0.2 0.2

Thermal Motion 0.8 0.8

Other 0.4 0.4

Total 11.14 0.86

Figure 2: Projected systematic uncertainty contribution at room
temperature and under cryogenic conditions [2]

lonizing Sr and Trapping Sr*

Trapping

Ablation and lonization Operating the Clock

- Pulsed 532 nm laser ablates a SrTiO, - 422 nm laser cools kinetic motion - Trap driven at 14.4 MHz to cancel the
crystal creating a vapor of neutral - 1092 nm re-pump laser contains %8Sr* electrllc ql:]z.aflrupole and second order
strontium to S-P cooling branch Doppler shifts [4] o

- 674 nm laser to address clock - Helmholtz coills for magnetic field .
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Figure 3: Two step ionization pathway of 88Sr [3] -1/2 Figure 5: Camera image of Paul trap,

Figure 4: Partial energy level diagram of 88Sr* [3] used for ion detection

Design Highlights
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Filgure 6: Interior of the inner vacuum chamber (left) and enlarged
view of Paul trap (right)
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- 40 K blackbody radiation shield thermally isolates 88Sr*
from 300 K environment

- Inner vacuum chamber maintains temperatures below 5 K
and pressure <10 Torr

Connects to Auxiliary
Chamber and Cryocooler
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